Conversion of perianth into reproductive organs by ectopic expression of the tobacco floral homeotic gene NAG1.

نویسندگان

  • S A Kempin
  • M A Mandel
  • M F Yanofsky
چکیده

Mutations in the AGAMOUS (AG) gene of Arabidopsis thaliana result in the conversion of reproductive organs, stamens and carpels, into perianth organs, sepals and petals. We have isolated and characterized the putative AG gene from Nicotiana tabacum, NAG1, whose deduced protein product shares 73% identical amino acid residues with the Arabidopsis AG gene product. RNA tissue in situ hybridizations show that NAG1 RNA accumulates early in tobacco flower development in the region of the floral meristem that will later give rise to stamens and carpels. Ectopic expression of NAG1 in transgenic tobacco plants results in a conversion of sepals and petals into carpels and stamens, respectively, indicating that NAG1 is sufficient to convert perianth into reproductive floral organs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

STYLOSA and FISTULATA: regulatory components of the homeotic control of Antirrhinum floral organogenesis.

The identity and developmental pattern of the four organ types constituting the flower is governed by three developmental functions, A, B and C, which are defined by homeotic genes and established in two adjacent whorls. In this report we morphologically and genetically characterise mutants of two genes, STYLOSA (STY) and FISTULATA (FIS) which control floral homeotic meristem- and organ-identit...

متن کامل

PAUSED, a putative exportin-t, acts pleiotropically in Arabidopsis development but is dispensable for viability.

Exportin-t was first identified in humans as a protein that mediates the export of tRNAs from the nucleus to the cytoplasm. Mutations in Los1p, the Saccharomyces cerevisiae exportin-t homolog, result in nuclear accumulation of tRNAs. Because no exportin-t mutants have been reported in multicellular organisms, the developmental functions of exportin-t have not been determined. Here, we report th...

متن کامل

The duplicated B-class MADS-box genes display dualistic characters in orchid floral organ identity and growth.

Orchidaceae are an excellent model to examine perianth development because of their sophisticated floral architecture. In this study, we identified 24 APETALA3 (AP3)-like and 13 PISTILLA (PI)-like genes from 11 species of orchids and characterized them into four AP3- and two PI-duplicated homologs. The first duplication event in AP3 homologs occurring in the early evolutionary history of the Or...

متن کامل

Ectopic expression of SUPERMAN suppresses development of petals and stamens.

The floral regulatory gene SUPERMAN (SUP) encodes a C2H2 type zinc finger protein that is required for maintaining boundaries between floral organs in Arabidopsis. It has been proposed that the main function of SUP is to balance cell proliferation in the third and fourth whorl of developing flowers, thereby maintaining the boundaries between the two whorls. To gain further insight into the func...

متن کامل

Genome-wide analysis of spatial gene expression in Arabidopsis flowers.

We have compared the gene expression profiles of inflorescences of the floral homeotic mutants apetala1, apetala2, apetala3, pistillata, and agamous with that of wild-type plants using a flower-specific cDNA microarray and a whole genome oligonucleotide array. By combining the data sets from the individual mutant/wild type comparisons, we were able to identify a large number of genes that are, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 103 4  شماره 

صفحات  -

تاریخ انتشار 1993